Department of Botany Surí Vídyasagar College Surí, Bírbhum, WB Study materíal for Sem-IV class Dated: 20.04.2024 Teacher: SA sír

Geological Time Scale

The geological time scale is a method of relating the timing and relationship between events that have occurred during the history of the Earth. This chart shows the sequence of major evolutionary events that appear in the geologic record. The first geologic time scale that included absolute dates was published in 1913 by British geologist **Arthur Holmes**.

	Eon	Era	Period	Epoch	Starting Age(MYA)	Major events
			Quaternary	Holocene	0.01	Historic time
				Pleistocene	2.5	Ice age, Appearance
						of humans
		Coenozoic	Neogene	Pliocene	5	
				Miocene	23	
		(The Era of	Paleogene	Oligocene	34	
	Phanerozoic	Angiosperms)		Eocene	56	
				Palaeocene	65	
(The	Eon of Visible Life)		Cretaceous		145	Origin of
		Mesozoic				Angiosperms
		(The Era of	Jurassic		199	Gymnosperms
		Gymnosperms)				dominant
			Triassic		251	
			Permian		299	Major Extinction
		Palaeozoic	Carboniferous		359	Seed ferns, Trees
			Devonian		416	Dominance of
		(The Era of				Pteridophytes
		Pteridophytes)	Silurian		444	Earliest records of
						vascular plants
			Ordovician		488	Bryophytes appear
			Cambrian		542	
Р	Proterozoic				2500	Eukaryotic
R						multicelullar
Е						Life(Grypania
С						<i>spiralis</i>) begins;
Α						Oxygen begins
Μ						accumulating in
В						atmosphere
R	Archean				4000	Oldest rocks;
I						Oldest prokaryotic
Α						fossils(Stromatolites);
Ν						Earth crust forms
	Hadean				4600	Earth forms

MYA= Million Years Ago

1 Million = 10,00,000

Hadean Eon (4600-4000mya)

- Birth of planet Earth: Big Bang Theory
- Solar system (Accretion disk) formation
- Large cloud of gas & dust around sun

Archean Eon (4000-2500mya)

Proterozoic Eon (2500-542mya)

1.Palaeoproterozoic Era:	2.Meso-protrerozoic Era:	3.Neo-proterozoic Era:	
2.5-1.6 billion	1.6-1billion	1billion- 542Million	
 Atmospheric oxygen. Oxygen catastrophe- The majority of anaerobic life on earth died around this time due to sudden development of free oxygen. The starting of formation of multicelllular organisms. 	 Dominance of Stromatolites Oxygen levels had risen to 1 % of today's O₂ level. 	 The most severe glaciation "Snowball Earth" formed when even the equator region was under snow. The earliest fossils of multicellular life. Decline of Stromatolites. Average global temperature was slightly cooler (12C) than 	
of multicelllular organisms.		cooler (12C) than today's(14C).	

First eukaryotic fossil alga

The oldest eukaryotic body fossil is the multicellular alga, Grypania spiralis.

Coiled *Grypania* is found as thin films of carbon in the **2.1 billion-year-old** Negaunee iron formation at the Empire Mine near Ishpeming, Michigan, USA.

The fossils are coiled forms of marine life that, if unwound, would stretch up to 9 cm (3.54 inches). Young specimens have been recovered from **1.1-billion-year-old rocks in China**.

Grypania is a **photosynthetic eukaryotic algae** that both produces and requires oxygen to function. Its discovery in 2.1-billion-year-old rock means that by then, oxygen must have been present in the atmosphere in concentrations high enough to support oxygen-using organisms.

Grypania spiralis: 2.1 billion years old

Grypania is an early, tube-shaped fossil from the <u>Proterozoic</u> eon.

What does *Grypania* represent? The safest identification is that they are eukaryotes. In a generalized way, they are often simply referred to as fossil algae.

Oldest fossils of eukaryotes—the protist, Grypania spiralis. These fossils were found in 2.1-billion-year-old Banded Iron Formations in Michigan. Bottom image: Grypania spiralis ribbons on gray, finely-laminated, iron-rich shale (slab is 9.0 cm across). Each fossil ribbon is ~0.5 to 0.6 mm wide. Top and bottom photos by James St. John ©. Middle photo by TSU-MING HAN, CLEVELAND CLIFFS INC. ©.

Pre-Cambrian Time: Hadean, Archean & Proterozoic eon:- These three eons collectively called Pre-cambrian age.

- The time between the birth of the planet and the appearance of complex forms of life is known as Pre-cambrian
- > More than 80% of earth's geologic time falls within this.

Era	Period	Starting age (MYA)	Major event
	Permian	299	3 rd & Deadliest mass extinction
Paleozoic	Carboniferous	359	Glaciation
	Devonian	416	Dominance of Pteridophytes
	Silurian	444	First vascular land plant
	Ordovician	488	Bryophytes appear
	Cambrian	542	Warm atmosphere

Cambrian Period (542-488mya) 420 Ma 300 LAURASIA Siberia, Kazakh Equitor Baltica China => Paleotethys Sea Armoriga Ibena . Avalonia Laurentia Rheic Ocean Arabia GONDW VA 60 Africa India Mexico South Antareties America Gondwanan in osteostracans △ Angaran galeaspids

- □ **Cambrian:** The highest concentrations of CO2 during all of the Paleozoic era occurred during the Cambrian period, nearly **7000ppm** which is about 18 times higher than today (412ppm).
- □ Average global temperature was warmer(22°C) than today's(14°C).

Ordovician Period (488-444mya)

* Appearance of Bryophytes

 Land surface was colonized by bryophyte-like plants as evidenced by the presence of fossil spores & cuticles.

Plants invaded moist land surfaces

- Ordovician: Origin of embryophytes. The first bryophytes (liverworts) appeared about 450 mya. First nonvascular land plants. Spores are arranged in permanent tetrads.
- * Naiadita Lanceolata , the best known bryophyte fossil from Upper Triassic.

Silurian Period (444-416mya)

- ✤ Appearance of vascular land plants
- * Cooksonia, the first vascular land plant

Devonian Period (416-359mya)

- Dominance of Pteridophytes
- Devonian: Dominance of Pteridophytes. Plants invaded upland areas around 380 mya with well developed root system.
- CO2 levels dropped to **400ppm**.
- Some examples of Devonian fossils:
 - i) *Leclercqia*, the earliest (middle Devonian) fossil lycopsid which shows ligule.
 - ii) Archaeopteris, a fossil progymnosperm of late Devonian
 - iii) Rhynia, a Devonian vascular plant
 - iv) Psilophyton, a Devonian vascular plant

Carboniferous Period (359-299mya)

- □ Permo-Carboniferous glaciations during 350-260 mya.
- □ Starting of Formation of Pangaea supercontitent(323 million).
- **1.Mississippian** sub-period: 359- 323 Million
- **2.Pennsylvanian** sub-period:323-299 Million
- □ Some examples of Carboniferous fossils:
 - i) Lepidodendron, an arborescent lycopsid
 - ii) Calamites, an arborescent horsetail
 - iii) Lyginopteris, a seed fern stem

Permian Period (299-251mya)

- □ Fully formed Pangaea supercontinent
- Permo-Carboniferous glaciation ends
- \Box 3rd & Deadliest mass extinction event; 96% species wiped out.
- □ Some examples of Carboniferous fossils:
 - i) Glossopteris, an extinct seed fern leaves of Permian period

Era	Period	Starting age (MYA)	Major event
Mesozoic	Cretaceous	145	Origin of Angiosperms
	Jurassic	199	Dominance of Dinosaurs & Gymnosperms
	Triassic	251	Dinosaurs appear

Triassic Period (251-199mya)

- Pangea begins to break up
- Early mammals
- First Dinosaurs

Jurassic Period (199-145mya)

Dinosaurs dominant

Gymnosperms dominant

- First birds
- Some examples of abundant Jurassic gymnospermic fossils:
 - i) *Cycadeoidea*, an extinct genus of Bennettitalean plant
 - ii) Williamsonia, a Bennettitalean female flower
 - iii) Weltrichia, a Bennettitalean male flower
 - iv) Bucklandia, a Bennettitalean stem
 - v) Ptilophyllum, a Bennettitalean leaf

Cretaceous Period (145-65mya)

- Extinction of Dinosaurs
- First flowering plant; thus, Angiosperms appear.

Fossil evidence of angiosperms from Cretaceous period: *Ficus speciosissima*

Evolutionary Development of Angiosperms

 Angiosperms evolved during the late Cretaceous Period, about 125-100 million years ago.

This leaf imprint shows a *Ficus* speciosissima, an angiosperm that flourished during the Cretaceous period.

A large number of pollinating insects also appeared during this same time.

Fossil evidence of anglosperms: This leaf imprint shows a Ficus speciosissima, an anglosperm that flourished during the Cretaceous period. A large number of pollinating insects also appeared during this same time.

Slab of fossil palm "wood." Transverse section of a portion of a fossil palm stem (*Palmoxylon cheyennense*, Cretaceous, Pierre Shale, South Dakota, U.S.A.). Note that palms and other "woody" monocots do not produce true wood. The dots in the palm stem are vascular bundles with associated bundle caps made up of fibers (compare to the cross section of the corn stem shown above). Credit: Model by Emily Hauf (Digital Atlas of Ancient Life, via Sketchfab, CC BY-SA 4.0).

Coenozoic Era

Era	Period	Epoch	Starting Age(MYA)	Major events
	Quaternary	Holocene	0.01	Historic time
Coenozoic		Pleistocene	2.5	Ice age, Appearance of humans
(The Fra of	Neogene	Pliocene	5	
Angiosperms)		Miocene	23	
	Paleogene	Oligocene	34	
		Eocene	56	
		Palaeocene	65	

Big Five Mass Extinctions of Phanerozoic Eon:

1.Ordovician Mass Extinction

Duration:455-430mya; 85% marine species wiped out; This was the **first** extinction event of the big five.

2. Devonian Mass Extinction

Duration: 375 mya; 75% species wiped out

3.Permian Mass Extinction:

Duration:252.2-251 mya; **Severest; 96% species** of life wiped out; Great Dying

4. Triassic Mass Extinction

Duration: 200 mya; 80% species wiped out

5.Cretaceous Mass Extinction

Duration:65.5-65 mya; Dinosaurs wiped out; 76% species lost

Causes of Mass Extinctions:

- Climate change
- Asteroid impacts
- Massive Volcanic eruptions
- Combination of all these

-----Thank You------